Technical Report 2

Falls Church Tower

Falls Church, VA

Nathan Eck Structural Option Consultant: Dr. Memari November 10, 2010

Nathan Eck	Falls Church Tower
Technical Report 2	Falls Church, VA

Table of Contents

Executive Summary	2
Introduction	
Structural Systems	
Foundation System	4
Gravity System	
Lateral System	
Applicable Codes	
Materials and Properties	9
Design Loads	
Floor Systems	
Post Tensioned	11
Hollow Core Plank	12
Flat Plate	13
Composite Steel Deck	
Comparison	
Conclusion	
Appendix	
A – Figures	18
B – Post Tensioned Design	
C – Hollow Core Plank Design	
D – Flat Plate Design	
E – Composite Steel Design	

Nathan Eck	Falls Church Tower
Technical Report 2	Falls Church, VA

Executive Summary

Technical Report 2 is a pro-con structural study of the existing typical floor system of Falls Church tower as well as three alternative floor systems. The purpose of this report is to verify the original design of the existing floor system and determine if it the best option when compared to the three alternative floor systems. This study uses current industry standards including ASCE 7, AISC and ACI to determine the viability of each floor system in question.

The existing floor system is a 7 in. post tensioned concrete slab. The typical bay size used to analyze the slab was 24 ft. by 28 ft. with the slab spanning the 24 ft. direction. The slab is supported by 16 in. by 32 in. columns which are arranged in alternating directions to resist lateral loads. This system was checked using criteria and methods described in chapters 5 and 7 of the Post-Tensioning Institute's post-tensioning manual.

The three other floor systems analyzed in this report include"

- Hollow Core Plank
- Two-Way Flat Plate
- Composite Steel Deck

Using the aforementioned standards, design calculations were carried out for each system. The design for each system is summarized in their respective sections along with the advantages and disadvantages of the systems. A comparison was then made between systems taking into account the total system depth, weight, constructability, cost, and feasibility among other criteria. From this comparison it was determined that the existing post tensioned system was the best choice for the building. This was due to the relatively low cost of the system as well as other factors such as its minimal system depth, vibration control, and the short lead time required. Additionally the post tensioned system was best suited fro the irregular shape of the building and the complex column layout.

Nathan Eck	Falls Church Tower
Technical Report 2	Falls Church, VA

Introduction

The Falls Church Tower is a luxury apartment building located in Falls Church, Virginia. The high rise apartment building stand eleven stories tall with penthouse on the main roof. Three and a half levels of parking are offered beneath the building and private pool sits adjacent to the plaza. The building encloses 364,000 square feet of gross floor area which excludes mechanical rooms, underground rooms, and garage space. The first floor contains the lobby, a residential gym, and a lounge as well as some living space with the remaining floors serving as strictly residential space. Overall the building contains 213 residential units with a wide view of the surrounding area courtesy of the building's curved facade. The structural system of the building is primarily concrete consisting of retaining walls, columns, post-tensioned slabs, and beams. The lateral system is composed of the aforementioned columns and slabs which form and ordinary concrete moment frame.

Nathan Eck	Falls Church Tower
Technical Report 2	Falls Church, VA

Foundation

The foundation system of Falls Church Tower was designed in accordance with the geotechnical report provided by Whitlock, Dairymple, Poston and Associates. The report indicated a soil bearing pressure of 4 ksf along the southern face of the tower and a bearing pressure of 10 ksf for the remainder of the structure.

The foundation system from levels B3 Ext. through B1 consist of retaining walls, spread footings, and a precast slab on grade. The retaining wall runs the full perimeter of the building with a thickness of 1'-4" on the B3 Ext. level and 1'-0" for B3 through B1. The footings under the retaining walls have a width ranging from 2' to 3'. The 2' width is used for sections of the buildings where the B1 retaining wall is offset towards the interior of the building by 3'-6". A section of a typical retaining wall can be seen in Figure 1-2 and Figure 1-3.

The column footings have a range of 6'x6' to 12'x12' throughout the structure. The larger footings (10'x10' to 12'x12') being located in the basement parking section beneath the plaza. A typical footing detail can be seen in Figure 1-1. The slab on grade is 5 ksi, normal weight concrete that is 5" thick with 6x6-W2.0xW2.0 welded wire fabric placed on a vapor barrier on top of 6" of #57 washed crushed stone

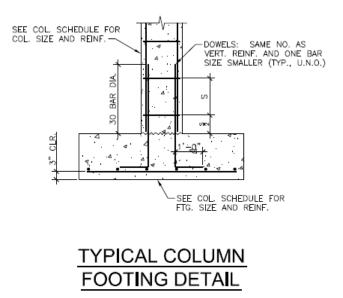
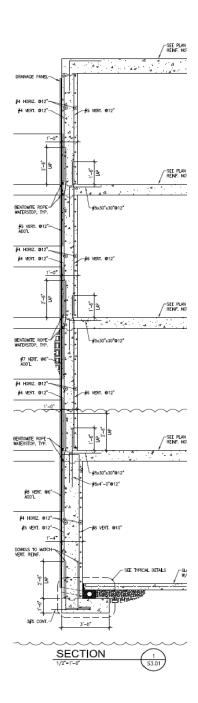



Figure 1-1

Nathan Eck Technical Report 2

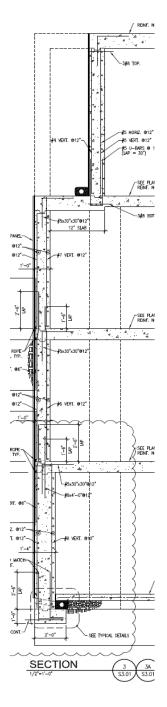


Figure 1-3

Nathan Eck	Falls Church Tower
Technical Report 2	Falls Church, VA

Gravity Load System

The main gravity load resisting system is composed of a flat plate supported by an intricate array of columns. Levels B3 Ext. through B1 plate systems are typically a 5 ksi, 9" thick, normal weight slab with a two way mat of #4 bottom bars at 12" on center except for slabs on grade which are 5 kis, 5" thick normal weight concrete. The penthouse roof and the elevator machine room roof use a 6" thick, one-way slab with the same properties and is support by a system of concrete beams. The plate systems from level 1 through the main roof utilize a 7" thick post tensioned slab. The typical tendons are two to three strands thick and spaced 5' on center. For a typical post tension layout plan refer to Figure 1-4.

The tower columns don't necessarily have a standard bay size due to the building's curved shape and the stair cases in both the east and west wings which interrupt any attempt at a rectilinear layout. The most typical bay size established throughout the building would be the 28'x24' bays located in the western half of the building's curved section. A standard column layout can be seen in Figure 1-5

In addition to the flat plate system the structural engineers also incorporated concrete beams into the design where necessary. As previously mentioned a system of beams is used to support the penthouse and mechanical room roofs. There are also strap (grade) beams used in the west section of B3 Ext. foundation and the east edge of B3 foundation which can be seen in Figure 1-6. Lastly, beams are used to frame all stairs and elevator shafts.

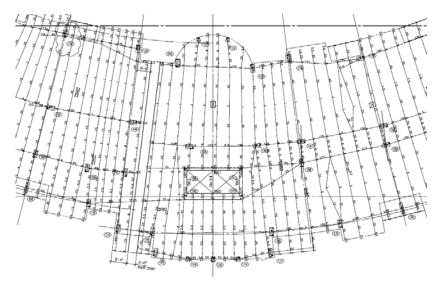


Figure 1-4 (for a larger view refer to Appendix A)

FOURTH FLOOR POST TENSION LAYOUT PLAN

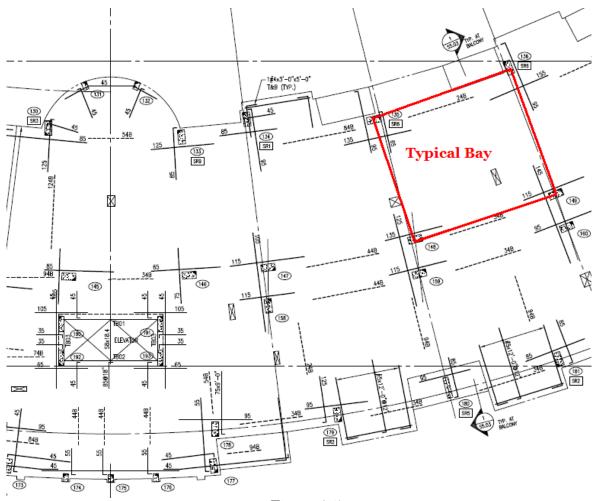


Figure 1-5

Lateral Load System

The lateral system of the building is an ordinary concrete moment frame. The tower columns' dimensions range from 12" to 24" on the short face and 12" to 48" on the long face. The two most typical columns that occur throughout the building are 16"x32" and 12"x36". The 16"x32" dimension is common for most of the interior columns whereas the 12"x36" columns are used to frame the stairs and elevator shafts.

Applicable Codes

Codes Used for Original Design

- International Building Code 2000
- Arlington County Building Code
- American Concrete Institute (ACI 318 and ACI 301)
- American Society for Testing and Materials
- American Institute of Steel Construction Manual

Codes Implemented for Thesis Analysis

- American Society of Civil Engineers (ASCE 7-05)
- International Building Code 2006

Resources

- AISC Steel Construction Manual (13th Edition)
- ACI 318 08
- Vulcraft Deck Catalog
- Nitterhouse Hollow Core Plank Specifications

Materials and Properties

Concrete

•	Footings Retaining Wall Footings	3000 psi 5000 psi
• • • • •	 Foundation Walls B3 and B3 Ext. Level B2 and B1 Level Site Retaining Wall Formed Slabs and Beams Columns Slabs on Grade Pea-Gravel Concrete 	5000 psi 4000 psi 5000 psi 5000 psi 5000, 6000, and 8000 psi 5000 psi 2500 psi
•	All Other Concrete	4000 psi
Reinf	orcing Steel	
• • •	Reinforcing Bars Welded Wire Fabric Reinforcing Bar Mats Reinforcing Bars in Garage Slabs Post Tension Steel	ASTM A615 ASTM A185 ASTM A185 ASTM A775 ASTM A416
Steel		
•	Wide Flange Members Stiffener Plates	ASTM A992 ASTM A572

• Other

ASTM A36

Nathan Eck	Falls Church Tower
Technical Report 2	Falls Church, VA

Design Loads

All of the design loads for Falls Church Tower were calculated using the values and methods provided in sections three and four. These values can be found in tables 1-1 and 1-2 below and include live load and dead load values. Snow loads have been excluded from this section but can be found in Appendix C. Live load reductions were not taken into consideration for this design.

Live Load Areas	ASCE	7-05 Required Loading	Loads Used By Engineer
Private Rooms	40 psf	ASCE 7-05 Table 4-1	40 psf + 20 psf (Partition Allowance)
Public Rooms/Corridors	100 psf	ASCE 7-05 Table 4-1	100 psf
Tenant Storage	125 psf	ASCE 7-05 Table 4-1	125 psf
Roof	20 psf	ASCE 7-05 Table 4-1	30 psf
Stairways	100 psf	ASCE 7-05 Table 4-1	100 psf
Balconies	100psf	ASCE 7-05 Table 4-1	-
Theater	60 psf	ASCE 7-05 Table 4-1	-
Garage	40 psf	ASCE 7-05 Table 4-1	50 psf
Plaza	100 psf	ASCE 7-05 Table 4-1	350 psf
Mechanical	-		150 psf
Elevator Machine Room	-		125 psf

Table 1-2: Gravity Dead Loads

Dead Loads	Load Values
Floor Finish	16 psf
Slab: B3 - 1	109 psf
Slab: 2 - Main Roof	85 psf
MEP	15 psf
Steel	15 psf
Misc	10 psf
Roof Waterproofing	5.5 psf

Nathan Eck	Falls Church Tower
Technical Report 2	Falls Church, VA

Post Tensioned Floor System (Existing)

The Post Tensioned System for this project was designed for a typical bay of 28'x24' (rough dimensions given the curved shape of the building). The system consists of a variety of unbonded tendons typically spaced at 4.5 ft. The tendons are made up of $\frac{1}{2}$ in. diameter strands of a minimum ultimate strength of 270 ksi with the number of strands per tendon ranging from two to ten strands.

Upon checking the existing system it was found that typical two strand tendon running through the column line is adequate to support a 7" slab with a tributary width of 4.5 ft. The only difference between the engineers design and the check carried out in this report was in the specified amount of bottom reinforcement. The original design has #4 bottom bars at 24 in. on center as sufficient reinforcing whereas the check carried out in this report calls for #7 bottom bars at 12 in. on center as the minimum reinforcing required to carry the loads. The reason for this discrepancy may be the specific loads used in either design as well as the rearranging of columns to simplify the check.

Design criteria such vibration and deflection were not checked in this report due the inherent complexity of post-tensioned systems as well as the unorthodox shape and layout of the building. Even so, it is common knowledge that post tensioned systems perform very well under deflections due the the balanced moment supplied by the stressed tendons.

Advantages

Post tensioned systems possess many advantages starting with their ability to span long distances which improves the flexibility of the the building's layout by minimizing the number of structural columns needed. Post tensioned systems also reduce the need for additional fire proofing due to the 7" of normal weight concrete that is the slab. From an architectural standpoint, post tension systems are more aesthetically pleasing with the smooth surface of the soffit which eliminates the need for a ceiling finish.

Disadvantages

The main disadvantages of post tensioned systems stem from their construction. The placement of tendons is extremely labor intensive and drawn out. Furthermore, the process of jacking the tendons is very delicate in that all the tendons must be jacked consistently and within a specific time frame to avoid uneven loading and ultimately the rupturing of a tendon through the slab which can be extremely hazardous for the laborers and set back the delivery date because of repairs.

Nathan Eck	Falls Church Tower
Technical Report 2	Falls Church, VA

In addition to the constructability issues, post tension system provide little in the way of mechanical flexibility in that most of the mechanical lines must be run through the walls. Additionally, early coordination between structural and mechanical engineers is necessary so as to avoid in field corrections such as cutting through a slab which could result in a ruptured tendon.

Hollow Core Plank System (Alternative)

The First alternative system researched for this report was the hollow core plank system. The specific system was obtained from the drawings and specifications section of the Nitterhouse website. The system chosen was a 6" x 4' section which conforms to the current by size of 28' x 24' by framing the planks into W14x30 beams located every 14'. The plank is composed of 5000 psi, normal weight concrete with 4 - $\frac{1}{2}$ in. diameter strands per section and 2" of concrete topping. The beams and girders for this system were designed using the AISC Steel Construction Manual (13th Edition).

Advantages

Hollow core planks provide many advantages to construction and serviceability. Structurally speaking they are durable, low maintenance, and installation is relatively quick because of the lack of form work. Additionally, they can be erected year round due to the fact that they don't have an in-field curing time. From a serviceability standpoint, hollow core systems require little building insulation due to the stagnant air void in the slab.

Disadvantages

While the advantages of hollow core systems are numerous, their disadvantages are enough to cancel them out. One of the biggest disadvantages they possess is their module. Most hollow core systems come in 4' sections which limits the column orientation in any building intending. This module also makes implication in an irregularly shaped building a near impossibility. A good example of this being Falls Church Tower which has a curved facade and complex array of columns.

The other drawback to using hollow core is that they require steel beams for support which greatly increases the overall floor to floor height which also increases to the total coast of the building.

Nathan Eck	Falls Church Tower
Technical Report 2	Falls Church, VA

Flat Plate System

The second alternative floor system researched for this report was a two way reinforced flat plate system. The panels of the system are 24'x28' so as to conform with the current typical bay size. The plate is composed of 5000 psi, normal weight concrete with 60000 psi steel reinforcing.

The plate was designed using the direct design method from ACI 318-08. Upon completion of the design calculations it was determined that a 9 in. slab would suffice with top and bottom reinforcing. The required reinforcing calculated is #6 at 12 in. for the 24 ft. span direction and #8 at 12 in. for the 28 ft. span direction.

Advantages

The flat plate system eliminates the need for a ceiling finish due to the aesthetically pleasing smooth surface that is the bottom of the slab. This also maximizes the floor to ceiling height and reduces the ratio between floor to ceiling and floor to floor height. In this respect the flat plate system has a distinct advantage over steel systems which require a larger floor to floor height which increases the total cost of the building. Furthermore, the concrete possesses a two hour fire rating making additional fire protection unnecessary.

Disadvantages

The typical disadvantages with flat plate systems include shear and span restrictions. Punching shear is a concern due the moment transfer from slab to column. Fortunately , the calculated 9 in. slab depth proved adequate for supporting the shear loads of the building. I addition to the shear concerns, the flat plate system has span limitations which are common among most concrete structures. The typical span limit for flat plate systems is 25 ft. but the design calculations in Appendix D Show that the 24 ft. by 28 ft. bays of Falls Church Tower are acceptable for this floor system.

Nathan Eck	Falls Church Tower
Technical Report 2	Falls Church, VA

Composite Steel Deck System

The composite steel deck was third floor system checked for this report. The design was based on the typical 24 ft. by 28 ft. bays that have been used throughout this report. Support beams for the deck were placed at 7 ft. intervals along the 28 ft. span direction and framed into beam girders. The deck design utilized the 2006 catalog from Vulcraft and was based on a 2 hour fire rating. A 2VLI21 composite deck possesses a maximum construction span of 7 ft. 2 in. for a single span which is greater than the beam spacing of 7 ft. A minimum of 2 in. of topping is required for a 2 hour fire rating with sprayed fiber and was the topping thickness used to determine the deck. The deck meets both load and deflection requirements as shown in Appendix E.

The design of the steel beams and girders were performed using the AISC Steel Construction Manual. It was determined that a W12x22 performed adequately under the deflection and loading criteria presented by the deck and would be the most effective beam size. For the girders it was determined that a W18x35 was the most effective size for the exterior girder and a W21x44 was the most effective size for the interior girder.

Advantages

Steel structures possesses many advantages the most notable stemming from material properties and erection. Because steel has such a high strength to weight ratio it is able to carry larger loads and span longer distances than other systems while maintaining a lower weight. This greater reduces the seismic impact on buildings as well as the cost.

Disadvantages

Steel systems do however have their disadvantages, especially when it comes to ceiling height. Most steel beams have a fairly large depth which when added to the supported deck depth creates a substantially deep floor system. Add to that the fact that a ceiling finish must be installed due to the unappealing nature of exposed steel and you develop a low floor to ceiling height which must be offset by increasing the floor to floor height. Ultimately, this leads to a large increase in building cost.

Nathan Eck	Falls Church Tower
Technical Report 2	Falls Church, VA

Comparison

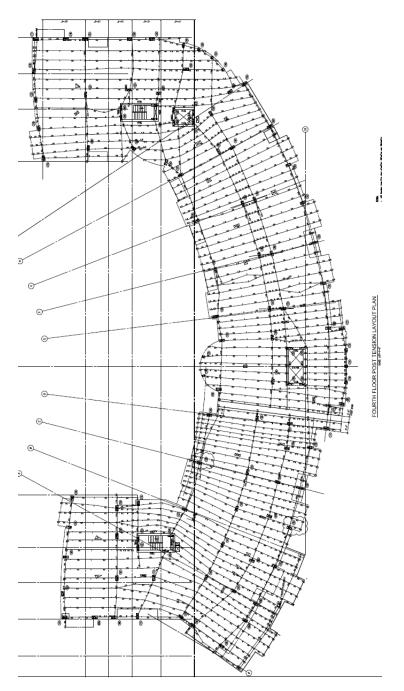
The comparison between the existing system and the alternative systems was based on the following criteria: slab weight, slab depth, system depth, vibration control, fire rating, additional fire proofing, constructability, formwork, floor to floor height, lead time, system cost, and feasibility. Table 2-1 illustrates the system comparison by highlighting positive aspects in blue and negative aspects in red.

	Post Tensioned	Hollow Core	Flat Plate	Composite Deck
Slab Weight	88 psf	49 psf	113 psf	44 psf
Slab Depth	7"	6"	9"	2"
System Depth	7"	24"	9"	23"
Vibration Control	Yes	No	Yes	Yes
Fire Rating	2 hr.	2 hr.	2 hr.	2 hr.
Additional Fire Proofing	No	No	No	Yes
Constructability	Hard	Easy	Medium	Easy
Formwork	Yes	No	Yes	No
Foor-Floor Height	-	Decreases	Increases	Increases
Lead Time	Short	Long	Short	Long
System Cost	\$22.60/sf	\$34.20/sf	\$20.20/sf	\$26.80/sf
Feasibility	Existing	Impossible	Most Possible	Possible

Table 2-1:	Comparison	Data
------------	-------------------	------

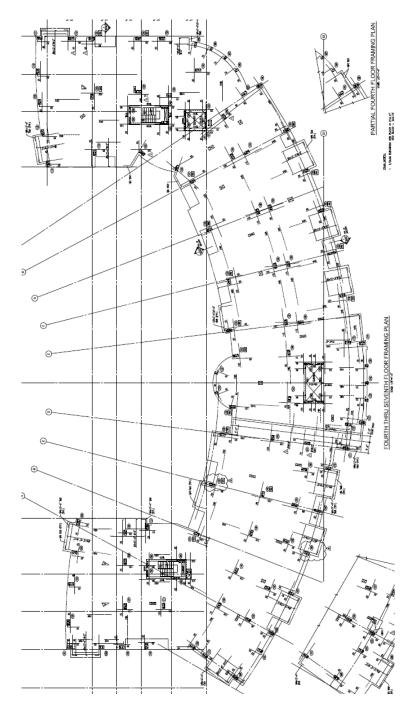
Nathan Eck	Falls Church Tower
Technical Report 2	Falls Church, VA

Conclusion

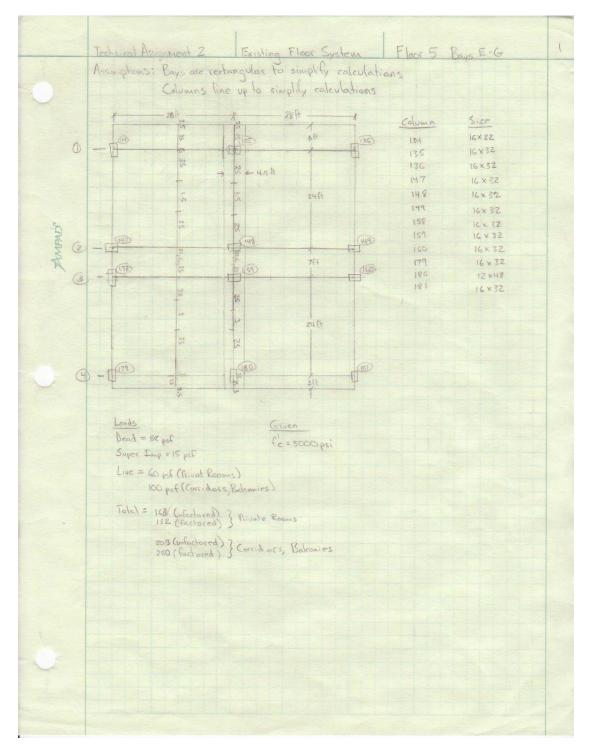

After analyzing the existing and alternate floor systems, it was determined that the existing post tensioned system is the best option for the building given the low cost and floor depth. Of the alternate floor systems explored the best choice for a replacement would be the flat plate system which has a lower cost than the post tensioned system and only a 2 in. increase in floor depth.

The hollow core system had positive attributes such as its low weight and ease of construction. However, the fact remains that the modular sections of this system make it impossible to incorporate into the existing shape of the building. The idea would be feasible if custom sections were ordered but this would only compound the already steep cost of the system. It must also be kept in mind that the implication of the hollow core system would mean rearranging the column grid for constructability purposes.

The composite steel deck system is a viable option but overall not the most appealing. With it low weight it reduces the impact of seismic loading and is fairly easy to construct. And while the price of the system is marginal it is offset buy the incurred costs of the increased floor height. Furthermore, as with the hollow core system, the column grid would have to be rearranged for constructability purposes. Nathan Eck Technical Report 2 Falls Church Tower Falls Church, VA


Appendix

<u> Appendix A – Figures</u>



Typical Post Tension Layout

<u> Appendix A – Figures</u>

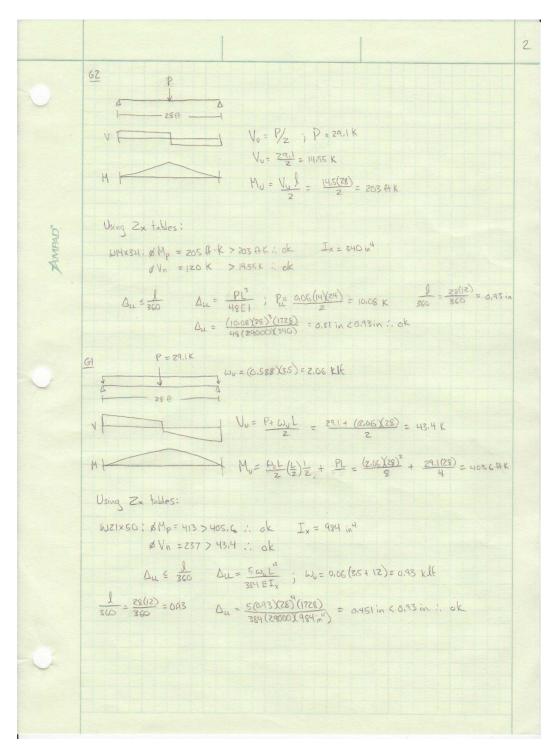
Typical Column Layout

	Dead 396 plt = 0.916 klt	-
	5	
		-
	© ® a o	
	Star Begin Stilliers	
	I= (4.513(2-/(1)(7.1))3 = 1544 W4	-
	E= 4000 kai	
9	KER KEI (Table A-14 from Concrete Design Tedback)	
anannt	$c_1 = 32$ in $c_2 = 16$ in $l_1 = 72$ in $l_2 = 64$ in $= 9$ $k = 4.324$	
R		
	4/2,= 0.44	
	Ken= (6.33)(4000 K/m ⁴)(1544 in ⁴¹) = 565707 in Kind	
	72 m	
	Kar= KEI (1=32. (2= 16 m	
	$k_{gg} = \frac{k_{ET}}{l_1} = \frac{c_1 = 32.n}{l_2} = \frac{c_2}{16} = 16 in$ $l_1 = \frac{1}{216} = \frac{216}{12} = \frac{54}{10} = \frac{1}{27} = \frac{1}{16} = \frac{1}{16$	
	$C_{1/2_{1}}=0.11$ $C_{2/2_{2}}=0.21$ CoF = 0.538	-
	(usau Yanni Yisau)	
	Kec = (4574)(400)(1544) = 98087 in 4/red	
	K_{CB} : $C_1 = 16$ in $C_2 = 32$ in	
	$\lambda_{1} = 285 \text{ in } \lambda_{2} = 54 \text{ in } = 2 \text{ k} = 4.591$	
	c/4=0,056 c2/2=01593 COF=0.528	
	Keg = (4159) (4900) (1514) = 98951 in-K/rad	
	Koo: Crellin Kzeszin	
	li = 54 in 12=54 in = k= 6.049	
	= 1,=0.190 Cellz=0.593 COF=0.623	
	$K_{eb} = \frac{(6.049)(4000)(1014)}{84} = 444746 \text{ in - } \frac{1}{100} \text{ m}^{-1} \text{ m}^{-1}$	
	E4 Trid	
	Koc: Cr=szin Cz=lain	
	li= 54 in lz= 54 in = K= 6,053	
	C/4= 0.381 C/1= 0.296 COF = 0.623	
	Koz = (6.053)(4000)(344) = 445040 in-K/red	

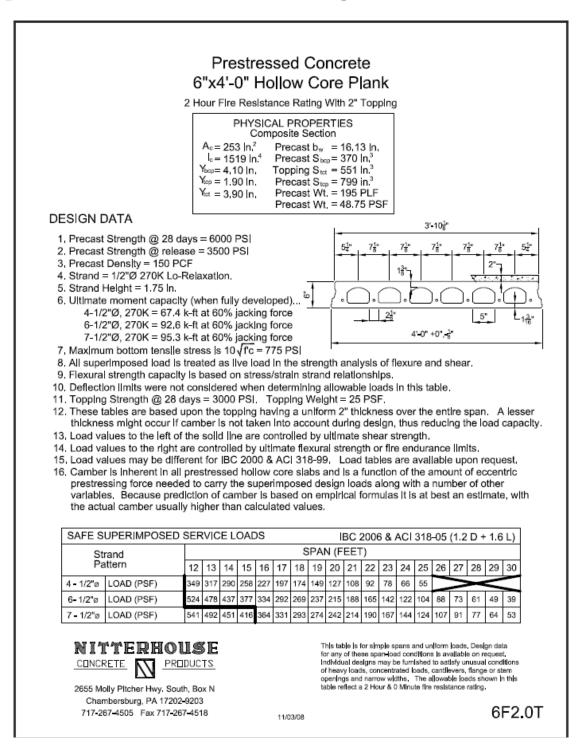
		3
	k_{DE} : $c_1 = 32 \text{ in}$ $c_2 = 16 \text{ in}$ $l_1 = 288 \text{ in}$ $l_2 = 54 \text{ in}$ \Rightarrow $l_k = 4.533$ coF = 0.539	
9	$C_{1} = 0.00$ $C_{2} = 0.00$ $C_{2} = 0.539$ $C_{1} = 0.00$ $C_{2} = 0.236$ in	
	$K_{DC} = \frac{(4.523) (4000)(1544)}{258} = 97208 \text{ in-} K_{tod}$	
	$K_{ED}: C_1 = 32$ $C_2 = 16 in$ $L_1 = 208$ $L_2 = 54 in$ \Rightarrow $K = 4,533$	
0	$c_{1/2} = 0.111$ $c_{2/2} = 0.296 in$ $coF = 0.539$	
"drawy	$K_{UE} = 97208$ in - K/rad	
X	$K_{\text{EF}}: C_1 = 52 \text{ in } C_x = 16 \text{ in } k = 8.786$ $\int_{1} = 36 \text{ in } J_z = 504 \text{ in } \Rightarrow$ $C_1 = \frac{1}{2} \frac{1}$	
	$C_{1/2} = 0.888$ $K_{EF} = \frac{8.786(4000)(3444)}{36} = (507287 - 1n - 1/2)/2020$	
	Column Sliffness	
	$k_{G} = k \frac{ET}{lc} \qquad l_{c} = 9,583.44 \qquad \text{t}_{a} = 355 \text{in} \\ l_{u} = 9.64 \qquad \text{t}_{c} = 3.55 \text{in} \implies k = 4.691 \\ T = 4.691 \qquad \text{t}_{c} = 3.55 \text{in} \implies k = 4.691 \\ T = 4.691 \qquad \text{t}_{c} = 3.55 \text{in} \implies k = 4.691 \\ T = 4.691 \qquad \text{t}_{c} = 3.55 \text{in} \implies k = 4.691 \\ T = 4.691 \qquad \text{t}_{c} = 3.55 \text{in} \implies k = 4.691 \\ T = 4.691 \qquad \text{t}_{c} = 3.55 \text{in} \implies k = 4.691 \\ T = 4.691 \qquad \text{t}_{c} = 3.55 \text{in} \implies k = 4.691 \\ T = 4.691 \qquad \text{t}_{c} = 3.55 \text{in} \implies k = 4.691 \\ T = 4.691 \qquad \text{t}_{c} = 3.55 \text{in} \implies k = 4.691 \\ T = 4.691 \qquad \text{t}_{c} = 3.55 \text{in} \implies k = 4.691 \\ T = 4.691 \qquad \text{t}_{c} = 3.55 \text{in} \implies k = 4.691 \\ T = 4.691 \qquad \text{t}_{c} = 3.55 \text{in} \implies k = 4.691 \\ T = 4.691 \qquad \text{t}_{c} = 3.55 \text{in} \implies k = 4.691 \\ T = 4.691 \qquad \text{t}_{c} = 3.55 \text{in} \implies k = 4.691 \\ T = 4.691 \qquad \text{t}_{c} = 3.55 \text{in} \implies k = 4.691 \\ T = 4.691 \text{t}_{c} = 3.55 \text{in} \implies k = 4.691 \\ T = 4.691 \text{t}_{c} = 3.55 \text{in} \implies k = 4.691 \\ T = 4.691 \text{t}_{c} = 3.55 \text{in} \implies k = 4.691 \\ T = 4.691 \text{t}_{c} = 3.55 \text{in} \implies k = 4.691 \text{t}_{c} = 3.65 \text{in} \implies k = 4.691 \text{t}_{c} = 3.55 \ \text{t}_{c} = 3.55 \ \text{t}_{c} = 3.55 t$	
	16= 436411M7 le/su = 1.065 ta/tu= 1.0	
	$K_{0} = \frac{2.64691 \times 4000 \times 436910}{115} = 14257703 \text{ in K/rad}$	
	K_{n} : $I_{\mu} = 10925 I_{\mu} 4$ k=4.691	
	$K_{g} = \frac{z(4.G1)(24000)(10923)}{115} = 35(44507 \text{ in - k/rad})$	
	K1 = K3 = KG = [4257703 in-k/rd	
0		

		U										
	Deal Load Moments											
	COF=0.538 COF=0.623 COF=0.539											
	JOINT B JOINT C JOINT D JOINT E											
	B-A B-G B-C C-B C-H C-D P-C D-1 D-E E-D E-J E-F											
	DF: 0.038 0.955 0.007 0.024 0.868 0.108 0.030 0.963 0.007. 0.006 0.849 0.095											
	FEH(A+K) 7.1319.01 19.01 -1.62 1.62 -19.01 19.01 -1.78											
	Dist 0.45 11.35 0.063 -0.417 -1509 -1.48 0.52 46.75 0.121 -0.03 -15.49 -1.64											
	CO -0,224 0.045 0.324 -1,17 -0.05 0.665 0.665 0.665 0.666 0.											
CAMPAD	Final 759 11.56 -19.15 18.63 -15.41 -3.22 1.01 17.93 -18.93 18.97 -15.55 -3.43											
MIN												
R												
	Belanced Loads											
	assume 65% of the dead looks are balanced by post-tensioning											
	$W_{bl} = 0.65 \times 103 = 6C.95 \approx 67 \text{ psf}$											
	Jendon Profile											
	use some profile as											
4	use some profile as											
	* And does ad have a value due to the contributered balconies.											
	ation : Span 1-2 = 7-1-1/2 = 4.5 in											
	Span 2-3 = a int = 0 due to a short span that creates a neglectable sag.											
	Span 3-4 = 7-1-3 = 3 in											
	Tention Force											
	$F = \frac{W_{LA} L^2}{8\alpha} \qquad \text{Span 1-2:} F = \frac{(0.067(24)^2)}{(4/16)^2} = 12.86 \text{ W/H} \qquad F_A = \frac{12.86 \text{ W/H}}{7.6000 \text{ (m/H)}} = 0.058 \text{ km} = 153 \text{ p}$											
	$F = \frac{12.86 \frac{1}{2}}{8a} = 12.86 \frac{1}{2} = 1$	SI										
	3-4: F= (0.067 × 24)2 - 19.79 14/4 F/ = 19.79 14/4 = 0.220 14-220	1.05										
	3-4: $F = \frac{(0.067 \times 24)^2}{(8(3)/12)} = 19.29 \frac{1}{4} = \frac{19.29 \times 44}{7(12)} = 0.230 \text{ km} = 230$	F.										
	Citical Section											
U.	Min VINET = WHET (1/2) (Tributary bidth) ; WHET = DL + LL - What = 103 + 60 - 67 = 96 psf = 0.096 lesf											
	NDET = (0.046 (415) (24/2) = 5,18 K											
	* Maximum Uner values will be used per column to simplify analysis											

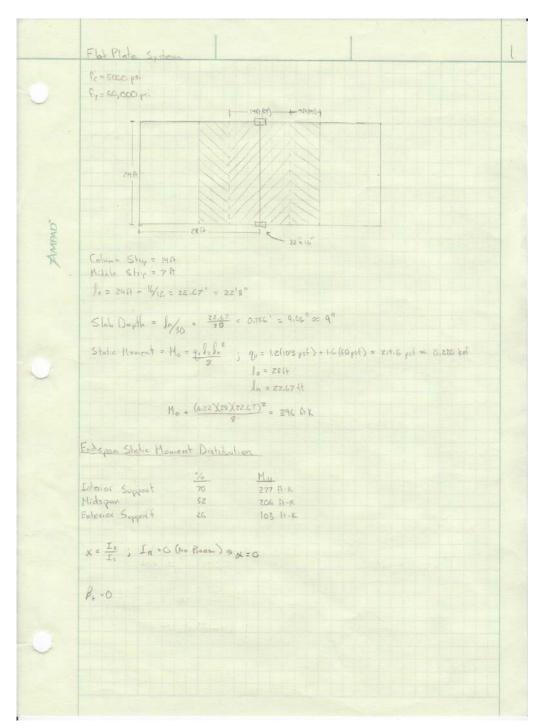
		TT	Ĩ	-				-		-				
	ETT.			Live	Load	Monie	nts (Onl	Alls	pans	2.		11=0.270 kit and 0,4	io k
	1	-								Cal				
	1tt				1-010	58	00	F = 0.6	12	Cal	== 0.53	9		
			Joint B	3		Joint	C	1	laint Ì	2		Joint	E	
		B-A	B-G	B-C	C-B	C-H	C-0	D-C	D-1	D-E	ErD	E-J	E-F	
	DF	0.038	0,955	0.007	6.624	G.868	0.108	0.030	6.963	0.007	0.00G	0.899	0.095	
	FEM		4/4	-12,96	12.96	-9/5	-1.84	- 1.94	10.71	-12.96	12.96	11.35	0.338	
	Disti	Unes	264	-0.144	12.015	- 1.65	1.0	-1-200	10,11	0.018	-0.016	-111.35	-1120	
	Dist Z	0,005	6.138	0,001	-0.005	-0,196	-0,024	0.024	0,700	0.006	ORAZ	0.038	-0.004	
-														
ONAMA	Final	6.29	4.78		12.71	-9185	-286	1,45	11.47	-12,92	12.93	-11,39	-1.54	
IW				*	*									
A	175												at a surface	
			l	No L	oad 1	lowe	nts (on S,	ans (5-1,1-2	, 3-4) 1	1= 0.270 klf and 0.450 k	14
	FILL									(LE				
													REAL PROPERTY	
	1.645	-	Joint	3		Joint	C		Joint	D	-	Jaint	E	
	DF	B-A	B-G	B-C	C-B	C-H	C-D	0-0	D-1	D-E	E-D	E-7	E-F	
	FEM	8.1	0.935	-1291	0,024	0.568	0,108	0,030	0.963	0.007		0.299	0,095	
	Dist1		4.64	0.034	-6.207	-9.65	-1.2		-		12.96	-11.65	-1.23	
-	03	In.		-0.190	NINE		10 200	- 0.748		-0,041				
	Distz	6,005	6.138	0.001	200.0-	-0.196	-0.021	6,024	0.76	0,006				
	5.3	-		-					-					
	Final	18.09	4.78	-13.07	12,71	-9,15	-2.96	-0,724	0.76	-0,035	12.88	-11.65	-1,25	
	1													
	* Th	ese v	Nowen	ts wi	Ilbe	used	to to	deter	whe	suppi	oct m	ower	ts. Given the complex	
	no	dure o	f the	buil	ding,	i Enly	spar	A B-C	- will	be a	chack	ed.		
					-									
	100													
	-													
2														

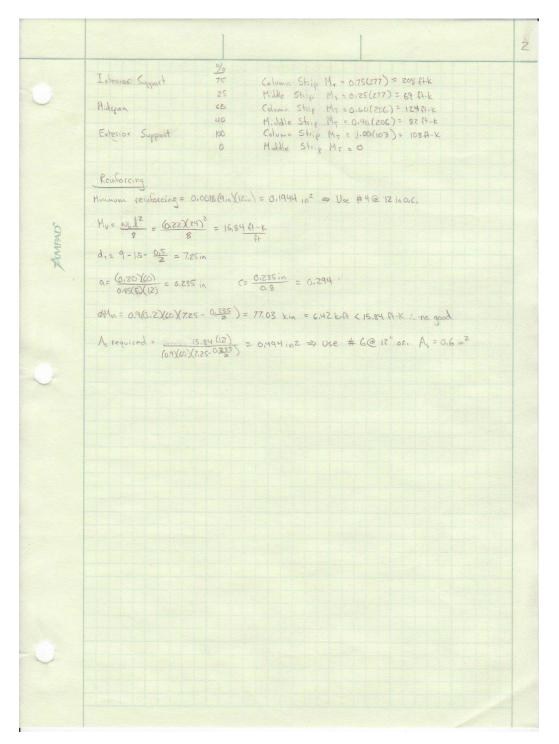

	Section Modulus	
	$S = \frac{bh^{2}}{bh^{2}} = \frac{s_{1}(7)^{2}}{2} = \frac{u_{1}(1)h^{2}}{4} = 36.75$ in/(4	
17	6 2	-
	Magalaster Monach (H-W) at Support	-
overnet	Looding ksf B C	
	Dead Load 0.103 - 19,15 - 18,13	
	Live Load 0.060 -13.07 -12.71	
	Belowed Lood 0.067 8.50 8.26	
	Net Load 0,096 -23.72 -23.08	
	VART 5118 5118	
°	N/3=6.11X(/2)/3) 460 2.30	
M		
the	Face Moment = Mont 45 -19,12 -20,78	_
×	M/S 0.521 0.565	
	P/A -0.153 -0.153 Top of State, Stress Priv) 0.368 0.412	-
	h c= column width parallel to span length	
	In C- COlumn width parallel to spain length	-
0	Supports B C	
	Belanced Howard 650 876	
	Balanced Harmont 8.50 8.26 - Ve/3 - 1.02 - 0.92	
	Balanced Manual at Ease 7.42 7.75	
	Fe = 12.86 (03/12) 0.536 - 0.836	
	Secondary Mowerds 6:44 7:21	
	Design Maments	
	Midspan Moment = Wulh?	
	Dead Load = $\frac{0.103(24)^2(4,5)}{11} = 24,27$ Live Load = $\frac{0.06(24)^2(4,5)}{11} = 14.14$	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Live Load = 0,000 (1/13) = 14,14	
	$M_2 = M_{BHL} - F_2 = \frac{0.067(24)^2(45)}{10} - \frac{12.82(45)}{12} = 10.96$	
	1 = 12.82(12) = 10.96	
		-
1		

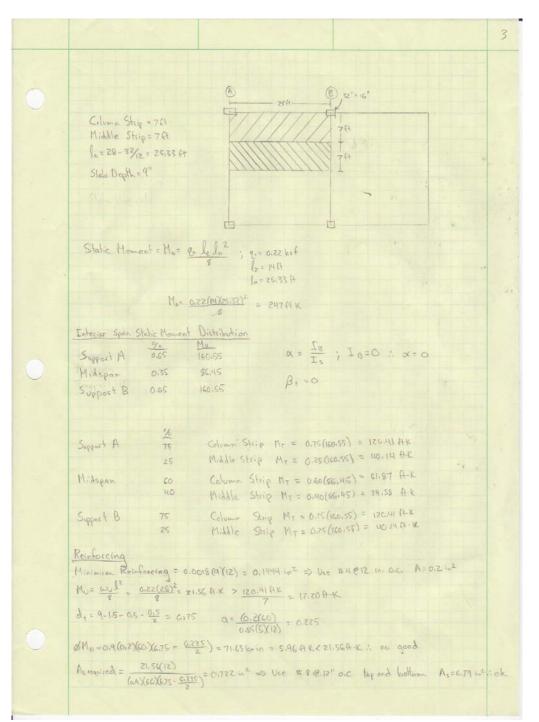
B Hidgan C 1.2 D 22:98 29:12 22:36 Ultimate Tendon Force fps = fse + 10000 + 100 p 1.6L 20,91 22.62 20,34 Mz 6.94 10:46 7.21 M 50:83 62:70 49:91 fse = 6.7 (270) - 151 = 174 kal V 8.8 8.8 8.8 No/3 4.6 -3.45 Pp = Aps/bd = (12.96 26.6)0.196/(54×5.5) = 0.000319 ME 46.23 59.25 47.61 $f_{ps} = 174000 + 10,000 + \frac{5000}{300(6.000319)} = 236000 \text{ psi}$ $f_{ps} = \frac{236}{174} (12.8C) = 17.44 \text{ K}$ "CAMPAD" Design Capacity $A_{s=0.002}(7)(G4) = 0.75C in^2/4.5ft = 0.168 in^2/ft \Rightarrow USE #4@ 12" o.c.$ Asty = 0.9. in2 (60) =: 64. Tu = 1 54.0+ 17.44 = 71.44 K Depth of Compression Block $a = \frac{T_{u}}{0.55} = \frac{71.44k}{0.55} = 0.311 \text{ in } \Rightarrow d = \frac{9}{2} = 5.5 - \frac{0.311}{2} = 5.35 \text{ in}$ Mu= \$ Tu(d- %2) = 0.9 (71.49) (5.35/2) = 28.67 G+K < 59.25 ft = Mu required 59.25 A+K = 2.67 ; i minimum steel is not adequate. Try #6@12in a.c. Try #7@ 12 in a.c. Acfy = (2.7 in2)(00) = 162 K Asify = (1.98)(60) = 118.8 K Tu = 162+17,44 = 179.44 K Tu= 116,81+17,44 = 136,24 K Mu=68.76A+K>59.25 : ok Mu = 53, 17 A-16 < 59.25 .: no good


<u> Appendix C – Hollow Core Plank Design</u>

	Hellowdere Plank				1				
•	Gribena for Plank Selection Zhe fire rating least amount of material Using hollowcore plank specifications from Nitter house:		2 146						
"Стани	6" «4" Hollowcose 2" topping 4-16" & Strands Fallowable = 290psf < (54.5 = Wo	40 81 40 40 40 40 40 40 40 40 40	82	83					
	Brown Sizing B2 (Typ) DL: Hollowcore = 48.75 psf Hic = 10 psf Member = 5 psf DL = 63.75 psf	$L = L_{0} \left(0.25 + \frac{15}{\sqrt{K_{L} A_{T}}} \right)$ $U = 60 \text{ psf}$; Ar= (m)(24) = 53 Ku = 1 Ku Ar = 336 f1 ² 6						
	$\begin{split} & U_{U} = 112(63.75) + 1.6(60) = 172.5 \text{ psf} \\ & V_{U} = \frac{(0.173)(H)(24)}{2} = 29.1 \text{ K} \\ & M_{U} = \frac{(0.173)(H)(24)^{2}}{5} = 174.4 \text{ AK} \\ & U_{Sing} \text{ Zx table from AISC Steel Construction Hanval:} \end{split}$								
	$\begin{split} H_{U} &\leq \not M_{P,x} \\ & W_{I} + X_{3}O : & \not M_{P,x} = 177 \ \text{RK} > 171 \ \text{RK} \\ & & & & & & & & & & & & \\ & & & & & $	$f_{\rm X} = 291 {\rm m}^{\rm Q}$	$\frac{1}{360} = \frac{24(12)}{360} = 0$	Distin					
0	Au = 5(6.00)29 384 (29600	(1728)(19) (1728)(19) (29(1)) = 0.372 m C	0.8 in i. ok						

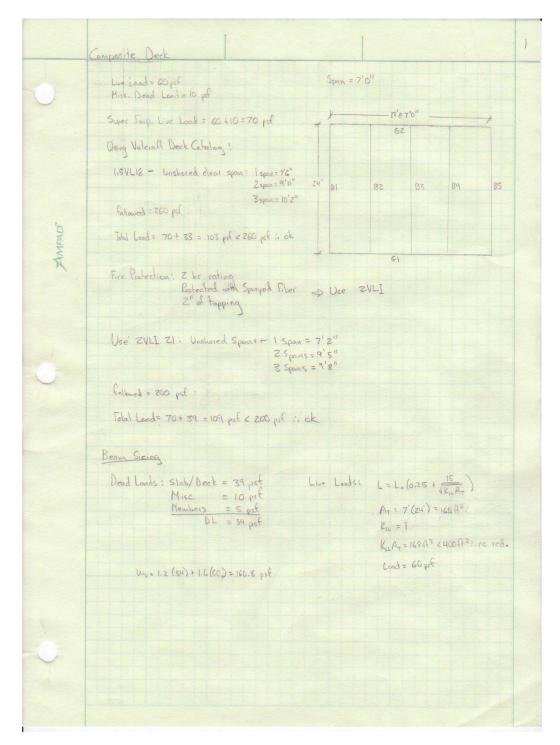

<u> Appendix C – Hollow Core Plank Design</u>


<u>Appendix C – Hollow Core Plank Design</u>


<u>Appendix D – Flat Plate Design</u>

<u> Appendix D – Flat Plate Design</u>

<u>Appendix D – Flat Plate Design</u>


<u> Appendix D – Flat Plate Design</u>

4 Shear $V_0 = (W_0 | A_c) = (0.22)(672e^{1 - (\frac{16}{100})}) = 147.06 \text{ k} \quad b_0 = 2(2(675) + 16) + 2(2(675) + 32) = 150$ $dV_{n} = O(V_{c} + V_{s}); V_{c} = \frac{1}{2} a_{17} (1 + \frac{2}{(32/6)}) \sqrt{5000} (150) (350) = 24342 16s = 24.3 K$ 0.083 (30(675)+2)5000 (150)(6.75) = 40773 165 = 40.7 K Min (0.33 5000 (150 (6.75) = 23626 166 = 23.0 K - 1. 23.6K controls $V_{s} = \frac{N_{0}}{g} - V_{c} = \frac{147cc}{0.75} - 23.6K = 172.48K$ $A_{v} = \frac{V_{s,s}}{f_{y}d} = \frac{(172\kappa)(3,in)}{(60)(c.75in)} = 1.27 \text{ in}^{2} \Rightarrow \#10.0.5in \text{ or}.$

<u> Appendix E – Composite Steel Deck Design</u>

Restrained Assembly	Type of Protection	Concrete Thickness & Type (1) 2* NW&LW	U.L. Design	Classified Deck Type		Unrestrained Beam
Rating			No. (2,3,4) 859 *	Fluted Deck 2VLL&VLI	Cellular Deck (5)	Rating 1,1.5,2,3 Hr.
		2 1/2" NW&LW	822 *	2VLI,3VLI	2VLP, 3VLP 2VLP, 3VLP	1 H
			825 * 831 *	1.5VLI,2VLI,3VLI 2VLI,3VLI	2VLP, 3VLP 2VLP, 3VLP	1,1.5,2 H 1,1.5,2 H
	Sprayed Fiber		832 * 833 *	1.5VLI.2VLI.3VLI	1.5VLP, 2VLP, 3VLP 2VLP, 3VLP	1.1.5.2.3 H
			847 *	1.5VLI,2VLI,3VLI 2VLI,3VLI	3VLP	1.5 Hr 1,1,5,3 Hr
			858*	2VLI,3VLI 12VLI,3VLI	2VLP, 3VLP	1,1.5,2,4 Hr 1,1.5 Hr
			870 * 871 *	1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,2 H
	1	2 1/2* LW	862 *	2VLI,3VLI 2VLI,3VLI	2VLP, 3VLP	1,1.5,2,3 Hr 1 Hr
2 Hr.		2 1/2" NW 3 1/4" LW	864 * 860 *	3VLI 2VLI,3VLI	3VLP	1.5 Hr 1.1.5.2 Hr
(continued)			733 # 826 #	1.5VL, 1.5VLI, 2VLI, 3VLI	1.5VLP. 2VLP. 3VLP	1,1.5Hr
			840 #	1.5VL,1.5VLI,2VLI,3VLI 1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP 1.5VLP, 2VLP, 3VLP 1.5VLP, 2VLP, 3VLP	1,1.5,2 Hr 1,1.5 Hr
		3 1/4" LW	902 # 907 #	1.5VL,1.5VLI,2VLI,3VLI 1.5VL,1.5VLI,2VLI,3VLI	1.5VLP 2VLP 3VLP	1,1.5 H 1,2 H
	Unprotected Deck	3 1/4" LW	913# 916#	1.5VL,1.5VLI,2VLI,3VLI 1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1 Hr
			918 #	1.5VL, 1.5VLI, 2VLI, 3VLI	1.5VLP, 2VLP, 3VLP 1.5VLP, 2VLP, 3VLP 1.5VLP, 2VLP, 3VLP	1,1.5,2,3 Hr 1,1.5 Hr
			919 # 920 #	1.5VL,1.5VLI,2VLI,3VLI 2VLI,3VLI	1.5VLP, 2VLP, 3VLP 2VLP, 3VLP	1,1.5 Hr 1.5 Hr
		4 1/2 ⁶ NW	902 # 916 #	1.5VL,1.5VLI,2VLI,3VLI 1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,1.5 Hr
			918 #	1.5VL, 1.5VLI, 2VLI, 3VLI	1.5VLP. 2VLP. 3VLP 1.5VLP. 2VLP. 3VLP	1,1.5,2,3 Hr 1,1.5 Hr
2.4	Exposed Grid	3 1/4" NW 2" NW&LW	919 # 216 + 743 *	1.5VL.1.5VLI.2VLI.3VLI 1.5VL.1.5VLI.2VLI.3VLI	1.5VLP, 2VLP, 3VLP 2VLP, 3VLP	1,1.5 Hr 2.3 Hr
		2" NW&LW 2 1/2" LW	743 * 746 *	2VLI,3VLI 1.5VLI	2VLP, 3VLP 2VLP, 3VLP	1,1.5,2,3 Hr 1,1.5,2,3 Hr
		the life berr	703 *	1.5VLI.2VLI.3VLI	1.5VLP, 2VLP, 3VLP	1.5 Hr
	Cementitious	2 1/2" NW&LW	708 * 739 * 755	1.5VLI,2VLI,3VLI 1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP 1.5VLP, 2VLP, 3VLP	1.5,3 Hr 1.1.5,2,3,4 Hr
			755	1.5VLI,2VLI,3VLI 1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP 1.5VLP, 2VLP, 3VLP	1,1.5,2,3 Hr 1,1.5,2,3 Hr
			760 *	2VLI,3VLI	1.0VLF, ZVLF, SVLF	1.1.5.2.3.4 Hr
		3 1/4" LW 3 1/4" NW 2" NW8LW	754*	1.5VLI,2VLI,3VLI 1.5VLI,2VLI,3VLI		1.5,2 Hr 1,1.5 Hr
		2" NW&LW	859 * 816 *	1.5VLI,2VLI,3VLI 2VLI,3VLI 1.5VLI,2VLI,3VLI	2VLP, 3VLP 2VLP, 3VLP	1,1.5,2,3 Hr 1.5,2 Hr
3 Hr.	Sprayed Fiber		831 *	2VLI,3VLI	2VLP, 3VLP	1,1,5,2 Hr
		2 1/2" NW&LW	832 * 833 *	1.5VLI,2VLI,3VLI 1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP 2VLP, 3VLP 2VLP, 3VLP	1,1.5,2,3 Hr 1.5 Hr
			858 871 *	2VLI.3VLI 2VLI.3VLI	2VLP, 3VLP 2VLP, 3VLP	1.1.5.2.4 Hr 1.1.5.2.3 Hr
		2 1/2" NW	864	3VLI	3VLP	1,5 Hr
		3 1/4" LW	860 * 902 #	2VLI,3VLI 1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,1,5,2 Hr 1,1,5 Hr
		4 3/16" LW	916 # 918 #	1.5VL,1.5VLI,2VLI,3VLI 1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP 1.5VLP, 2VLP, 3VLP	1,1.5,2,3 Hr 1,1.5 Hr
	Unprotected Deck		919#	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,1.5 Hr
		5 1/4" NW	902 # 916 #	1.5VL,1.5VL,2VLI,3VLI 1.5VL,1.5VL,2VLI,3VLI 1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP 1.5VLP, 2VLP, 3VLP 1.5VLP, 2VLP, 3VLP	1,1.5 Hr 1,1.5,2,3 Hr
		• • •	918 # 919 #	1.5VL 1.5VLI.2VLI.3VLI 1.5VL 1.5VLI.2VLI.3VLI	1.5VLP, 2VLP, 3VLP 1.5VLP, 2VLP, 3VLP	1,1.5 Hr 1,1.5 Hr
	Cementitious	2 1/2" NW&LW	760 739	2VLI,3VLI 1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,1.5,2,3,4 Hr
4 Hr.		3 1/4" LW	754	1.5VLI,2VLI,3VLI 2VLI,3VLI		1,1.5,2,3,4 Hr 1.5,2 Hr 1,1.5,2,4 Hr
	Sprayed Fiber	2 1/2" NW&LW 3 1/4" LW	858 860	2VLI,3VLI 2VLI,3VLI	2VLP, 3VLP	1,1.5,2.4 Hr 1,1.5,2 Hr

<u> Appendix E – Composite Steel Deck Design</u>

<u>Appendix E – Composite Steel Deck Design</u>

<u> Appendix E – Composite Steel Deck Design</u>

2 Required Loads Vu= (160:8 X7 Y24) = 13507 165 = 13.51 K Hu= wul = (160.8×7)(24) = 81043 Nbs = 81.04 K Using Zx Table of AISC Steel Construction Manual: Mu & & Mpx WIZX19: 0Mp = 92.6 AK > 31.04AK .. ok "CLAMPAD" ØVn = 85.7 K> 13.51 K :. ok $\Delta_{11} \leq \frac{1}{360} \qquad \Delta_{113} = \frac{5\omega_{11}L^{2}}{384 E T_{x}} + T_{x} = 130 \text{ in}^{4} \qquad \frac{1}{360} = \frac{624 \text{ PM}(12)}{360} = 0.8 \text{ in}$ ALL = 5(0,10×24)*(1725 m/43 (7) 384(29000)(130 m) = 0.833 in 2018in." no good Ireq = 135.2 in" Use WIZXZZ Ix=156 m4 Gilder Sizin Wolfrown slab deck spawning 7' corridor) GI P3=13.51K Wu=(49pst X3.5') = 174.5 plk = 0.172 kbf 22.2K Vu = (0.172)(28) + 36(3.51) = 22.7K $M_{u} = \frac{(6.172)(28)}{2} \left(\frac{28}{2}\right) \left(\frac{1}{2}\right) + \frac{3((3.51)(7)}{2} + \frac{(3.51)(7)}{2}$ = 16,86 + 141,9 + 47,3 = 206. 1 AK Using Zx Tallesi W19x35: BMp= 249 AK>2061 AK 1 ok Ix=510 in &Vn=159 K > 2217.K :. 0K $\Delta_{\rm LL} = \frac{5}{360} \qquad \Delta_{\rm LL} = \frac{5}{384} \frac{1}{100} \qquad M_{\rm LL} = (0.000 \times 3.00 + 12) = 0.93 \ {\rm kH}$

<u> Appendix E – Composite Steel Deck Design</u>

3 62 P=13.51K Vu= 3(13,51) = 40,53 K $M_0 = \frac{V_0L}{4} + \frac{PL}{8} = \frac{40.53(28)}{4} + \frac{13.51(28)}{331.4 \text{ K}} = 331.4 \text{ K}$ M Using Zx Tables ! W21x44; dHp= 358 AK > 331 A-K :. ok Ix= 243 m⁴ dVn= 217 K > 405 K :. ok "AMPAD" $\Delta_{LL} = \frac{5}{384} \frac{L^{4}}{L^{2}} = \frac{5(0,0CX(12)(28)^{4}(1728)}{384(29000)(843)} = 0.41 \text{ in } < 0.93 \text{ in : old}$ Du≤ 300 $\frac{1}{360} = \frac{28(12)}{360} = 0.93 \text{ in}$